

Effect of Artificial Vagina Lubricants on Stallion Sperm Quality

<u>R Serafini, S Ghosh, CC Love, JMR Medrano, SR Teague, KA LaCaze & DD Varner</u> Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA

Introduction

Commercially available lubricants, labeled as nonspermicidal, are used to lubricate artificial vaginas prior to semen collection in stallions (Figure 1).

Improper type or amount of lubricant may affect stallion sperm quality, either after short exposure time or following cooled storage of extended semen.

Experimental Aim

Evaluate the effects of different commercial lubricants on an assortment of measures of sperm quality in stallions following:

Short-term exposure - 1 h (T1h) or
 Long-term exposure - 24 h (T24h) of cooled storage.

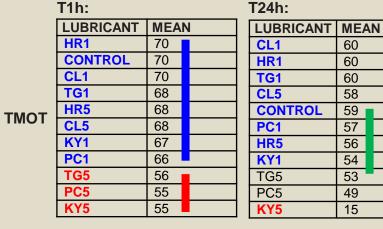
Materials and Methods

Three ejaculates were collected from each of four stallions for the study using a Missouri model artificial vagina (AV, Nasco, Ft. Atkinson, WI, USA), which was lubricated with water-insoluble petroleum jelly (Vaseline[™]).

Prior to semen collection, semen extender (EquiPRO® Coolguard®) was aliquoted into capped tubes, with extender containing no lubricant

(Control), or 1% or 5% (w/v) of each of the following lubricants:

- HR® Lubricating Jelly (HR1, HR5; HR Pharmaceuticals Inc., York, PA, USA);
- K-Y[™] Jelly (KY1, KY5; Johnson and Johnson, New Brunswick, NJ, USA);
- Therio-gel® (TG1, TG5; Agtech Inc., Manhattan, KS, USA);
- Priority Care® (PC1, PC5; First Priority Inc., Elgin, IL. USA); and
- **Clarity**[®] (CL1, CL5; Aurora Pharmaceutical, LLC, Northfield, MN, USA).


Each tube was then placed on a mixer plate at 37 °C and gently inverted for 2 h prior to semen collection.

Gel-free semen (containing 30 x 10⁶ sperm/mL) was added to each tube, then samples

	21112	elite product for elite genes"
		herio-gel°
	Unscented	The Veterinary Fertility Lubricant
CLARIT		Clinically shown to kharm sperm, fertilization rate or sensitive tissues
	be - creaseless	Use on AVs can improve ejaculate quality and quantity during collection
Non-Spermicidal	HR O	Uniquely preserves sperm function during storage
-	Ì	The All Animal Species- 36 og (102 g)
Val Use Only V (Uss mL)		3.6 oz (102 g)

Figure 1: Three commercially available artificial vagina lubricants used prior to semen collection in stallions.

Results*

LUBRICANT	MEAN]	LUBRICANT	MEAN	
HR1	72			HR1	71	
CL1	71			CONTROL	70	
TG5	70			TG1	70	
HR5	70			CL1	70	
TG1	70			PC1	70	
CL5	70			TG5	69	
CONTROL	69]	HR5	69	
PC1	68]	CL5	68	-
PC5	65]	PC5	66	
KY1	63			KY1	62	
KY5	46]	KY5	40	

VAI

COMP-a

Contraction of the second second

	LUBRICANT	MEAN	I	LUBRICANT	MEA	N	
	KY5	28		KY5	42		
	KY1	25		KY1	31		
	HR5	25		HR5	28		
	TG5	25		PC5	29		
	CONTROL	24		TG1	27		
t	TG1	24		TG5	27		
	CL1	23		PC1	28		
	PC1	24		CONTROL	27		
	CL5	23		CL5	26		
	PC5	24		CL1	26		
	HR1	22		HR1	25		
	LUDDICANT			LUPPICANT		N	

LUBRICANT	MEAN	MEAN		LUBRICANT	MEA	MEAN	
TG5	20			CL1	16		
CL1	21				14		
TG1	15			TG1	14		
CONTROL	10			CL5	9		
KY1	14			PC1	9		
CL5	13			KY1	6		
PC5	7			CONTROL	7		
HR5	10			PC5	5		
	TG5 CL1 TG1 CONTROL KY1 CL5 PC5	TG5 20 CL1 21 TG1 15 CONTROL 10 KY1 14 CL5 13 PC5 7	TG5 20 CL1 21 TG1 15 CONTROL 10 KY1 14 CL5 13 PC5 7	TG5 20 CL1 21 1 TG1 15 1 CONTROL 10 1 KY1 14 1 CL5 13 - PC5 7 -	TG5 20 CL1 CL1 21 TG5 TG1 15 TG1 CONTROL 10 CL5 KY1 14 PC1 CL5 13 KY1 PC5 7 CONTROL	TG5 20 CL1 16 CL1 21 TG5 14 TG1 15 1 TG1 14 CONTROL 10 CL5 9 PC1 9 KY1 14 CONTROL 9 KY1 6 PC5 7 CONTROL 7 7	TG5 20 CL1 16 CL1 21 TG5 14 TG1 15 TG1 14 CONTROL 10 CL5 9 KY1 14 PC1 9 KY1 6 CONTROL 7

were rotated gently at 37 °C for 1 h. Each treatment was then divided in two aliquots. One aliquot was subjected to immediate analysis (T1h), and one aliquot was placed in an Equitainer (Equitainer II[™], Hamilton Research, Inc., South Hamilton, MA, USA) and evaluated after 24 h of cooled storage (T24h). Experimental endpoints were:

- Percent total sperm motility (TMOT);
- Percent viable acrosome intact sperm (VAI);
- Percent of sperm with abnormal DNA (COMP-α,);
- Percent viable lipid peroxidation negative sperm (VLPN); and
- Percent of sperm with no or minimal DNA oxidative injury [8OHdG(-)]

Samples evaluated for abnormal DNA, lipid peroxidation and DNA oxidative injury were exposed to acid (HCI), ultraviolet light, or iron sulfate/hydrogen peroxide, respectively, as test perturbations.

Statistical Analysis

Data were subjected to rank transformation, then analyzed using an ANOVA procedure within time (T1h, T24h). Means were compared using the Tukey's studentized range test. Significance was set at P < 0.05.

PC1 8 HR5 7 KY5 4 HR1 5 HR1 7 KY5 1

	LUBRICANT	MEAN		LUBRICANT	MEA	MEAN	
	CL1	55		KY1	60		
	KY5	52		KY5	56		
	KY1	49		HR5	52 📕		
	HR1	48		CL1	51		
	CONTROL	47		HR1	48		
8OHdG (-)	CL5	47		CL5	45		
	HR5	42		CONTROL	41		
	PC5	32		TG1	31		
	TG1	23		TG5	24	1	
	PC1	18		PC1	22		
	TG5	16		PC5	22		

*In each table, means with different colored bar differ (P < 0.05). A treatment-by-stallion interaction was detected for TMOT and COMP- α_t (P < 0.05). At T1h, TMOT was lower in KY5, PC5, and TG5 than in all other treatments in 3 of 4 stallions (P < 0.05).

At T24h, TMOT was lower in KY5 than in all other treatments in 3 of 4 stallions (P < 0.05). At T1h, there was no effect of treatment on COMP- α_t for all stallions (P > 0.05). At T24h, COMP- α_t was higher in KY5 than in all other treatments in 2 of 4 stallions (P < 0.05).

Conclusions

Exposure of sperm to KY was detrimental to all sperm quality measures, except for 8OHdG. This may be due to the high non-viable sperm population that would not respond to the perturbation.

In general, exposure to 5% KY, PC, or TG lubricants yielded lower sperm quality, and the effect was most profound in KY. Most sperm quality measures were unaffected by different concentrations (1 or 5%) of HR and CL lubricants with values similar to control. Lubricant TG tended to yield lower values for sperm lipid peroxidation; however, TG increased sperm susceptibility to oxidative injury.

This study highlights the importance of using caution when selecting an artificial vagina lubricant for semen collection from stallions, even if lubricants are marketed as being safe for this purpose. Lubricants CL yielded high values for all 5 endpoints, whereas HR yielded high values for 4 endpoints; therefore, these lubricants might be the safest among those tested for collection of stallion semen.

Acknowledgments

The study was funded by the Legends Premier Stallion Season Auction Fund, Texas A&M University.